P8-0600-00023S aircraft specification

Table of contents

1 Summary	3
1 Summary2 Aeroplane specification	4
2.1 Engine	5
2.1.1 option #1	5
2.1.2 option #2	5
2.1.3 option #3	
2.1.4 option #4	
2.2 Propeller	6
2.2.1 option 1 for engine #1	
3 Aeroplane description	
3.1 Fuselage	
3.2 Wings	7
3.3 Tail unit	7
3.4 Flight controls	7
4 Aeroplane dimensions	
4.1 Wing	8
4.2 Ailerons	8
4.3 Fuselage	8
4.4 Vertical stabilizer	
4.5 Horizontal stabilizer	9

1 SUMMARY

In this report Pik-28 dimensions are defined in accordance to CS-LSA amd 1 and ASTM F2245-13b Requirements.

Statement of Conformity

I certify that this report here has been made in accordance with the requirements of CS-LSA amd 1 and ASTM F2245-13b that the information furnished herein is true and correct to the best of my knowledge.

osk HTH page 3 (10)

AEROPLANE SPECIFICATION 2

Type IPR holder Osuuskunta Hyvä Tapa Harrastaa

Koppönkatu 4 D 8, 64100

Kristiinankaupunki

Finland

Licence for usage as defined in webpages:

www.hooteehoo.org

CERN Open Hardware license strongly-

reciprocal

Maximum weight 600 kg ??? kg

Maximum zero-fuel weight

Maximum weight of

non-Lifting parts ??? kg Maximum cockpit load ?? kg

Control surface movements

Aileron 26° +2° -2° up

> down 10° +2° -2°

Elevator 35° +2° -2° up

35° +2° -2° down 25° ±2° riaht

Rudder

25° ±2° left

Airspeed limits Design Dive speed (V_D) 360 km/h

> Never-Exceed (V_{NE}) 310 km/h Cruise speed (V_C) 255 km/h Manoeuvring (V_A) 218 km/h Flaps down (V_F) 160 km/h

c.g range 17% to 39,8 % MAC,

625 mm to 862 mm behind datum.

Manouvering g-limits +4,4 g ... -2,0 g

> / cg range is to be checked and probably changed after weight check and test flights. /

Vertical plane at firewall forward face. Datum

Vertical line at front face of firewall Levelling means

frame

Coordinate system X increases back from datum

Y increases from symmetry plane to

right

Z increases up.

Fuel capacity Total 120 liters (gross) in two wing

tanks, plus ?? liters in fuselage collector

tank. Wing fuel tank is at position X=605 mm Y=1250mm, Z=-266 mm. gasoline, methanol, ethanol resistant

osk HTH page 4 (10)

tanks with stainless steel inner liner,

Composite outer shell.

No. of seats One seats. Position of persons c.g 1200

mm (TBC).

Design basis F2245-13b + CS-LSA amd 1

2.1 Engine

Several possibilities:

2.1.1 option #1

Manufacturer Bombardier-Rotax GmbH, Gunskirchen,

Austria

Model Rotax 912 UL

Type Liquid/air cooled, 1211 cm³, four-stroke,

four-cylinder boxer engine with a integrated 2,27:1 transmission to the

propeller.

Exhaust

Max rpm5800Max continuous rpm5500

max available take-off power max continous performance

Fuel

59,6 kW (80 hp) at 5800 rpm 58 kW (78 hp) at 5500 rpm

Normal automobile gasoline EN228, minimum octane number 95, E10 or aviation gasoline, AVGAS 100 LL.

2.1.2 option #2

Manufacturer Bombardier-Rotax GmbH, Gunskirchen,

Austria

Model Rotax 912 ULS /S / F

Type Liquid/air cooled, 1352 cm³, four-stroke,

four-cylinder boxer engine with a integrated 2,43:1 transmission to the

propeller.

Exhaust

Max rpm5800Max continuous rpm5500

max available take-off power max continous performance

Fuel

73,5 kW (100 hp) at 5800 rpm 69 kW(93 hp) at 5500 rpm

Normal automobile gasoline EN228, minimum octane number 95, or aviation

gasoline, AVGAS 100 LL.

2.1.3 option #3

Manufacturer Continental Motors inc

Mobile, Alabama, USA

Model O-200-D, O-200-X, O-200-AF

osk HTH page 5 (10)

Type Air cooled, 3290 cm³, four-stroke, four-

cylinder boxer engine, direct drive to

the propeller.

Exhaust

Max rpm 2750 Max continuous rpm 2750

max available take-off power max continous performance

Fuel

74,6 kW (100 hp) at 2750 rpm 74,6 kW (100 hp) at 2750 rpm aviation gasoline, AVGAS 100 LL.

Unleaded Avgas

2.1.4 option #4

Manufacturer ULPower Aero Engines,

leper, Belgium

Model UL260i, UL260iS

Type Air cooled, 2592 cm³, four-stroke, four-

cylinder boxer engine, direct drive to

the propeller.

Exhaust

Max rpm 3300 Max continuous rpm 2800

max available take-off power 72,3 kW (97 hp) at 3300 rpm (i)

79,8 kW (107 hp) at 3300 rpm (iS) 64,9 kW (87 hp) at 2800 rpm (i)

max continous performance 64,9 kW (87 hp) at 2800 rpm (i) 70,8 kW (95 hp) at 2800 rpm (iS)

Regular unleaded automotive gasoline with min. 95 Octane RON, UL260iS 98 octane, aviation gasoline, AVGAS 100

LL.

2.2 Propeller

Fuel

several possibilities:

2.2.1 *option* 1 *for engine* #1

Manufacturer Helix Propeller

Model

Diameter 1650 mm

Type Two blade, composite, fixed pitch

propeller

Direction of rotation clockwise looking from tail of aircraft

towards front.

osk HTH page 6 (10)

3 AEROPLANE DESCRIPTION

3.1 Fuselage

Frame and skin plywood constructed stressed skin construction. Plywood/PETfoam sandwich ribs.

Single seat closed cockpit. Fixed tailwheel type landing gear. Main gear attached to fuselage.

Engine mounted at front of fuselage. Tractor propeller.

3.2 Wings

Cantilevel double taper chord low wing. Plywood torsion box, with wooden /glass/carbon spars. Plywood/PETfoam sandwich ribs to auxiliary spar. Fabric covered rear section (?).

Composite wing tips.

Main fuel tanks of stainless steel liner with composite outer shell, mounted inside wings leading edge.

Movable aileron of rib/fabric covering construction in the outer taper section of wings. Fully mass balanced aileron.

Split flaps on trailing edge of inner tapered section of wing.

3.3 Tail unit

Vertical tail of same type structure as wings. Horizontal tail mounted on top of fuselage rear.

Movable rudder and elevator of rib/fabric covering construction. Fully mass balanced.

3.4 Flight controls

Elevator: cables Rudder: cables Aileron: cables

Trim: push-pull cable to trim tab Landing flaps: plain flaps

osk HTH page 7 (10)

4 AEROPLANE DIMENSIONS

4.1 Wing

<u>Geometry</u>		
span	b =	8,14 m
Wing area	S =	9,08 m²
angle of incidence	i =	-1,02 °
swept angle	25% chord	0,0 °
dihedral angle		5,1 °
Aspect ratio	AR =	7,29
mean aerodynamic chord	\bar{c} =	1,171 m
leading edge of \bar{c}	x =	0,413 m
	Y =	1,808 m
wing apex X coordinate		0,374 m

Aerodynamics

Profile	NASA NLF(1)-0115		
	root thickness mid kink t/c	17,28% 15%	
	tip section t/c	15%	
Wing lift curve gradient		5,0042 [1/rad]	
Moment coefficient (CL = 0)	c _{m0} = "	-0,0705 @ -2,29°	
Zero lift angle	$\alpha_0 =$	-2,29°	

4.2 Ailerons

4.3

Length (firewall to tail)

Height (level attitude)

Width (not engine)

Height (on ground)

Total length (spinner – tail, typical)

Aileron span location (y-coord) area (total both sides) Relative chord Deflection	b = S =	2,32 m 1,752 - 4,044 m 0,77 m ² 16 % + 10° - 26°
Landing flap span location (y-coord) area (total both sides) Relative chord	b = S =	1,332 m 0,369 – 1,701 m 0,675 m ² 20%
max deflection Fuselage		50 °

4,702 m

0,775 m

5,74 m

2,4 m

1,7 m

osk HTH page 8 (10)

4.4 Vertical stabilizer

Geometry Span Area Root chord (z=363) Tip chord (z=1314) Rudder span Rudder root chord (z=363) Rudder tip chord (z=1314)	$b_{s} = S_{s} = S_{s} = C_{sr} = C_{st} = C_{rr} = C_{rr} = C_{rt} = C_{rt} = C_{rt} = C_{rt}$	1,045 m 0,815 m ² 1,136 m 0,433 m 1,006 m 0,364 m 0,203 m
Rudder area Rudder/stabilizer ratio Sweep angle Rudder deflection <u>Aerodynamics</u> Profile		0,283 m ² 0,53 21,1 ° -25° 71-L-150/30 mod.
Lift curve gradient	$\left(\frac{\P C_l}{\P \alpha}\right)_s =$	2,73 [1/rad]
Moment coefficient Moment arm	$c_{m0} =$	0,0
(wing apex to stab apex) Radius of gyration in yaw	r _s = K	2,754 m 1,326 m

4.5 Horizontal stabilizer

Geometry Span Area Root Chord Tip Chord Aspect ratio Hor tail M.A.C	b _e = S _e = C _e = C _e = A _e =	2,530 m 1,83 m ² 0,934 m 0,572 m 3,50 0,768 m
Elevator chord root (hinge back) m	C =	0,294
Elevator chord root (LE to hinge)		0,042m
Elevator area Sweep angle /1/4 chord Dihedral angle angle of incidence Elevator deflection	i =	0,57 m ² 6,7 ° 0 ° +1,1 ° ± 35 °
Aerodynamics Profile	Wortman FX 71	-L-150/30 mod.
Lift curve gradient	$\left(\frac{\P C_l}{\P \alpha}\right)_e =$	4,67 [1/rad]
Moment coefficient MAC leading edge Moment arm	$c_{m0} =$	0,0 3,875 m
(wing apex to tail apex) For gust calculations;	r _e =	3,405 m

osk HTH page 9 (10)

Lift arm (1/4 c of both surf.) I_{HT} 3,301 m Downwash factor $1 - \left(\frac{\partial \varepsilon}{\partial \alpha}\right)$ 0,6328

---- END ----

osk HTH page 10 (10)